

compact multi dimensional translation stages

TRITOR 400

- highly compact design
- accurate parallel motion by parallelogram design
- high reliability due to solid state hinges
- motion without mechanical play
- high resolution in nm and sub-nm range
- motion up to 400 µm
- precision pin holes for easy mounting

applications:

- optics, laser tuning, fiber positioning
- micromanipulation, biology
- scanning systems
- vacuum and cryogenic applications

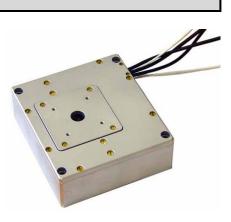


fig.: TRITOR 400 CAP (vacuum version)

Concept

Specials

piezosystem jena was the first to introduce the compact XYZ nanopositioning stage TRITOR, and we can now stand behind this system as the only company to have over 18 years experience in designing and manufacturing of this three axis stage.

The unique TRITOR elements are extremely compact but offer motions of up to 400 μ m in all three axes.

TRITOR elements can be easily combined with other mechanical positioning systems. Due to FEA-optimization of these stages you meet highest dynamical performance and excellent guiding accuracy. This is accomplished even with high mass loads in a compact package.

Parallel motion is achieved without play due to the mechanical design.

As an option, integrated position control systems for overcoming the effect of hysteresis are available.

Piezoactuators also function in cryogenic environment, associated with a linear decreasing extension behavior.

Mounting/Installation

TRITOR elements consist of actuators integrated in housing with an internal lever transmission. Since the lever mechanism works in both directions, forces between housing and top plate need to be avoided, as they could damage the stage.

The stage is attached by using tow diagonal holes. Components can be mounted on the top plate by two diagonal tapped and can be accurately located by using the precision pin holes.

technical data:

series TRITOR		unit	TRITOR 400	TRITOR 400 SG	TRITOR 400 CAP	
part no.		-	T-406-00	T-406-01	T-406-06	
axes			-	X, Y, Z		
motion open loop	(±10	%)*	μm	400 400		
motion closed loc	op (±0),2%)*	μm	- 320		
capacitance (±20	%)**	x/y/z	μF	14/14/14 6/6/14		6/6/14
integrated measu	ireme	nt	-	-	strain gage	capacitive
resolution open lo	oop**'	*	nm	0.8	0.8	0.8
resolution closed	loop*	***	nm	-	35	1
typ. repeatability			nm	-	67	40
resonant frequen	су	x/y/z	Hz	180/280/140		
stiffness		x/y/z	N/µm	0.3/0.3/0.25		
max. push force		x/y/z	Ν	120/120/100		
max. pull force x/y/z			12/12/10			
max. load			Ν	100	100	40
voltage range			V	-20+130		
	power (x/y)		-	LEMO 0S.302 ODU 3pin		
connector	pow	er (z)	-	LEMO 0S.302		
	sens	sor	-	-	LEMO 0S.304	LEMO 0S.650
cable length		m	1.0	1.2	1.6	
min. bend radius of cable		mm	>15			
body material		-	stainless steel / anodized aluminum			
dimensions (I x w x h)		mm	116x106x40	116.5x106.5x40	116x106x40	
aperture outside center		mm	Ø12.5			
weight			g	1050 red loop NV 40/3 CLE)	1050	1100

typical value measured with NV 40/3 (closed loop NV 40/3 CLE)

** typical value for small electrical field strength

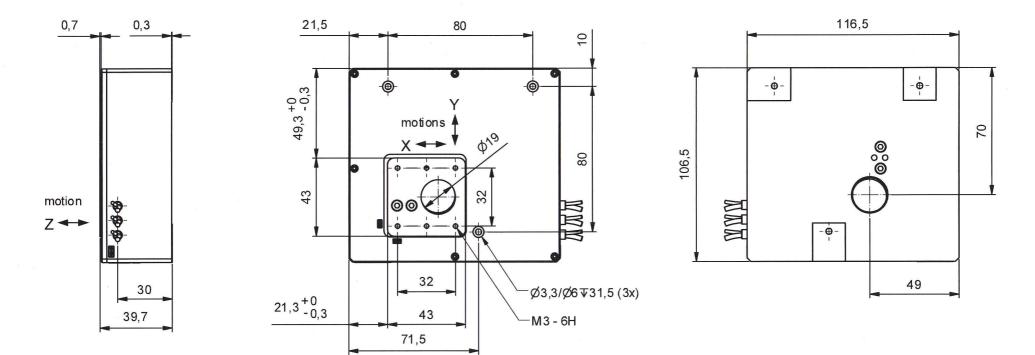
*** Because of the ceramic's solid-state phenomena based extension and the striction- and friction-free guidance design the whole assembly's resolution is only limited by the noise of the power amplifier and metrology.

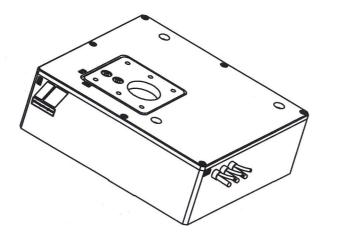
recommended configurations:

actuator	TRITOR 400	T-406-00
amplifier/controller	3 x ENV 40	E-103-10
power supply unit	ENT 40	E-103-13
PC interface	EDA 4	E-202-40
casing for all modules	63 TE	E-103-97
actuator	TRITOR 400 SG	T-406-01
amplifier/controller	3 x ENV 40 SG	E-240-100
power supply unit	ENT 40	E-103-13
PC interface	EDA 4	E-202-40
casing for all modules	84 TE	E-103-91
actuator	TRITOR 400 CAP	T-406-06
amplifier/controller	2 x ENV nanoX 40 CAP	E-240-600
amplifier/controller	1 x ENV 40 CAP	E-103-60
power supply unit	ENT 40	E-103-13
PC interface	EDA 4	E-202-40
casing for all modules	84 TE	E-103-91

Please pay attention to our "notes for mounting", which are available as download on our homepage.

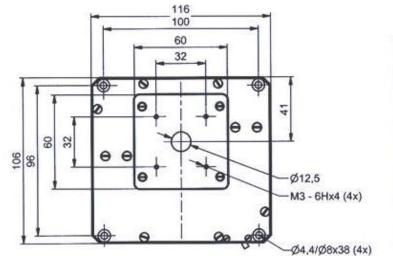
phone: +49 (3641) 66880 • fax: +49 (3641) 668866 • info@piezojena.com • http://www.piezojena.com

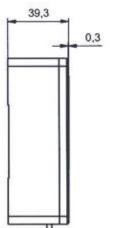

TIVE

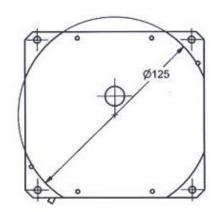

side view

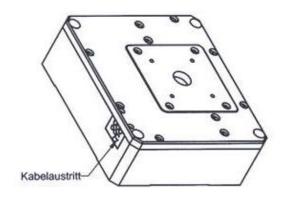
Г

top




Achtung [Attention]:


Alle Abmaße in der Zeichnung gelten auch für TRITOR 400 (T-406-00). [All dimensions included this drawing also relevant for TRITOR 400 (T-406-00)]


partno.		partname	
T-406-01(00)		Tritor 400 SG	
file name PT40601	REV01	OK: date/sign. 21. 7. JAN. 2010	
	scale 1:2	customers drawing piezosystem jena	

Geschäftsführer: Dr. Bernt Götz, Thomas Martin · Telefon 03641.66880 · Fax 03641.668866 · www.piezojena.com VAT-Nr. DE 150531409 · Commerzbank BLZ 82040000, Kto 2584209 · Deutsche Bank BLZ 82070024, Kto 5315718 Deutsche Kreditbank BLZ 12030000, Kto 1049048 · WEEE-Reg.-Nr. DE 75296336

part -no		part -name
T-406-0	6	Tritor 400 CAP
PT40606		OK: date/sign.] 3 8. MRZ. 7006
70	scale	customers drawing
JW	1:2	piezosystem jena

compact multi dimensional translation stages

TRITOR 400

- highly compact design
- accurate parallel motion by parallelogram design
- high reliability due to solid state hinges
- motion without mechanical play
- high resolution in nm and sub-nm range
- motion up to 400 µm
- precision pin holes for easy mounting

applications:

- optics, laser tuning, fiber positioning
- micromanipulation, biology
- scanning systems
- vacuum and cryogenic applications

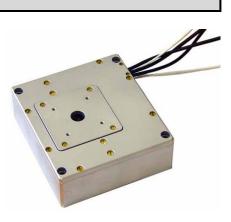


fig.: TRITOR 400 CAP (vacuum version)

Concept

Specials

piezosystem jena was the first to introduce the compact XYZ nanopositioning stage TRITOR, and we can now stand behind this system as the only company to have over 18 years experience in designing and manufacturing of this three axis stage.

The unique TRITOR elements are extremely compact but offer motions of up to 400 μ m in all three axes.

TRITOR elements can be easily combined with other mechanical positioning systems. Due to FEA-optimization of these stages you meet highest dynamical performance and excellent guiding accuracy. This is accomplished even with high mass loads in a compact package.

Parallel motion is achieved without play due to the mechanical design.

As an option, integrated position control systems for overcoming the effect of hysteresis are available.

Piezoactuators also function in cryogenic environment, associated with a linear decreasing extension behavior.

Mounting/Installation

TRITOR elements consist of actuators integrated in housing with an internal lever transmission. Since the lever mechanism works in both directions, forces between housing and top plate need to be avoided, as they could damage the stage.

The stage is attached by using tow diagonal holes. Components can be mounted on the top plate by two diagonal tapped and can be accurately located by using the precision pin holes.

technical data:

series TRITOR		unit	TRITOR 400	TRITOR 400 SG	TRITOR 400 CAP	
part no.		-	T-406-00	T-406-01	T-406-06	
axes			-	X, Y, Z		
motion open loop	(±10	%)*	μm	400 400		
motion closed loc	op (±0),2%)*	μm	- 320		
capacitance (±20	%)**	x/y/z	μF	14/14/14 6/6/14		6/6/14
integrated measu	ireme	nt	-	-	strain gage	capacitive
resolution open lo	oop**'	*	nm	0.8	0.8	0.8
resolution closed	loop*	***	nm	-	35	1
typ. repeatability			nm	-	67	40
resonant frequen	су	x/y/z	Hz	180/280/140		
stiffness		x/y/z	N/µm	0.3/0.3/0.25		
max. push force		x/y/z	Ν	120/120/100		
max. pull force x/y/z			12/12/10			
max. load			Ν	100	100	40
voltage range			V	-20+130		
	power (x/y)		-	LEMO 0S.302 ODU 3pin		
connector	pow	er (z)	-	LEMO 0S.302		
	sens	sor	-	-	LEMO 0S.304	LEMO 0S.650
cable length		m	1.0	1.2	1.6	
min. bend radius of cable		mm	>15			
body material		-	stainless steel / anodized aluminum			
dimensions (I x w x h)		mm	116x106x40	116.5x106.5x40	116x106x40	
aperture outside center		mm	Ø12.5			
weight			g	1050 red loop NV 40/3 CLE)	1050	1100

typical value measured with NV 40/3 (closed loop NV 40/3 CLE)

** typical value for small electrical field strength

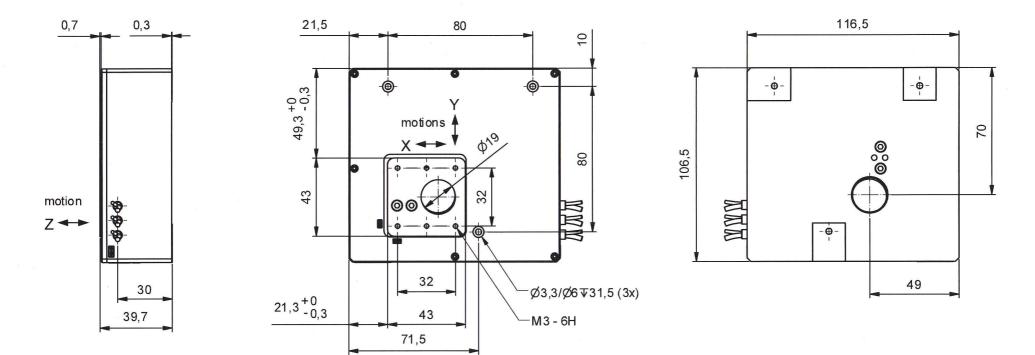
*** Because of the ceramic's solid-state phenomena based extension and the striction- and friction-free guidance design the whole assembly's resolution is only limited by the noise of the power amplifier and metrology.

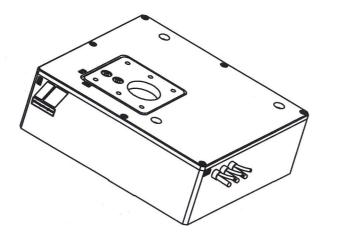
recommended configurations:

actuator	TRITOR 400	T-406-00
amplifier/controller	3 x ENV 40	E-103-10
power supply unit	ENT 40	E-103-13
PC interface	EDA 4	E-202-40
casing for all modules	63 TE	E-103-97
actuator	TRITOR 400 SG	T-406-01
amplifier/controller	3 x ENV 40 SG	E-240-100
power supply unit	ENT 40	E-103-13
PC interface	EDA 4	E-202-40
casing for all modules	84 TE	E-103-91
actuator	TRITOR 400 CAP	T-406-06
amplifier/controller	2 x ENV nanoX 40 CAP	E-240-600
amplifier/controller	1 x ENV 40 CAP	E-103-60
power supply unit	ENT 40	E-103-13
PC interface	EDA 4	E-202-40
casing for all modules	84 TE	E-103-91

Please pay attention to our "notes for mounting", which are available as download on our homepage.

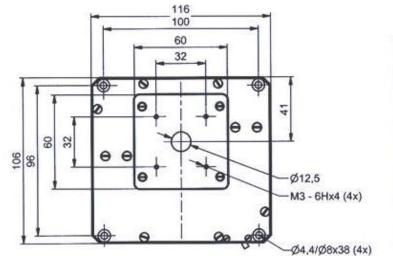
phone: +49 (3641) 66880 • fax: +49 (3641) 668866 • info@piezojena.com • http://www.piezojena.com

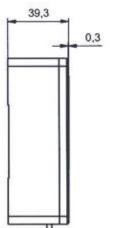

TIVE

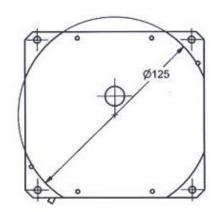

side view

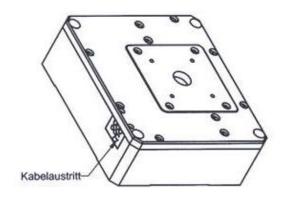
Г

top




Achtung [Attention]:


Alle Abmaße in der Zeichnung gelten auch für TRITOR 400 (T-406-00). [All dimensions included this drawing also relevant for TRITOR 400 (T-406-00)]


partno.		partname	
T-406-01(00)		Tritor 400 SG	
file name PT40601	REV01	OK: date/sign. 21. 7. JAN. 2010	
	scale 1:2	customers drawing piezosystem jena	

Geschäftsführer: Dr. Bernt Götz, Thomas Martin · Telefon 03641.66880 · Fax 03641.668866 · www.piezojena.com VAT-Nr. DE 150531409 · Commerzbank BLZ 82040000, Kto 2584209 · Deutsche Bank BLZ 82070024, Kto 5315718 Deutsche Kreditbank BLZ 12030000, Kto 1049048 · WEEE-Reg.-Nr. DE 75296336

part -no		part -name
T-406-0	6	Tritor 400 CAP
PT40606		OK: date/sign.] 3 8. MRZ. 7006
70	scale	customers drawing
JW	1:2	piezosystem jena

